We are excited to announce that we will be going public on the New York Stock Exchange through a business combination with Altimar Acquisition Corp. II! Read more.

DMLM vs. DMLS – Is There Really Any Difference?

gpi prototype dmlm identical to dmls

This article is intended to clarify an aspect of metal 3D printing terminology that is commonly misunderstood and often used incorrectly.

DMLM = DMLS

DMLS = DMLM is basis for this statement, so here is a simple analogy.

Visualize a bucket of ice cubes on your conference table.

If left to sit for a short while at room temperature, the individual cubes will soon start to melt. After putting the bucket of ice cubes back in the freezer, the ice will stick to each other, such that if you try to pull out one cube you will most likely get a random glob of multiple cubes stuck together. This fusing of cubes together is analogous to the most common interpretation or use of the word ‘sintering.’ Note that the properties of the glob of cubes may or may not resemble the properties of an individual cube as there will likely be pockets of air, or different density ice, interspersed within the mass of ice.

If you left this same bucket of ice cubes out on the table long enough for all the cubes to melt, you would have a bucket of water. If you put that bucket of water back in the freezer it would solidify into effectively one large homogenous and fully dense piece of ice.  This is analogous to what happens in DMLM and DMLS 3D printing with metals.

The laser provides enough heat (energy) to melt the metal particles. The laser is directed at those particles and then, as the laser moves on, the melt pool rapidly solidifies into a fully dense homogenous structure. In this case, the properties of this new block of ice exactly resemble the properties of the individual ice cubes we started with and do not have air, or different density, interspersed within the mass.

Simply put, sintering is not melting.

Sintering Does Have Its Place

During traditional sintering of powder metal all kinds of processes were developed to address the porosity or fill the interstitial spaces between particles – like infiltration and hipping. These processes are not needed with DMLS or DMLM as the resultant structure is fully-dense as produced.

If you actually needed a portion of a part to be sintered within a DMLM part, let’s say the center, it is possible to change the power of the laser for that defined area of the part. Then the laser can be turned back up to complete the rest of the part, resulting in a part with a less dense/solid center.

EOS Technology

When using EOS default parameters for DMLS, a melt pool is formed and a fully-dense structure, equivalent to wrought, results. This is identical to the process referred to as DMLM.

EOS prefers the word ‘solidification’ (as opposed to ‘sintering’) be used in describing their DMLS (Direct Metal Laser Solidification) process

There are sintered-based 3D printing technologies as well, but EOS is not one of them – EOS is melt-pool based. A 3D printed part is heated in an oven to harden it and reduce its porosity.

The expert metal 3D printing technicians at Fathom can help you successfully incorporate metal 3D printing into your next prototyping, manufacturing or product design project.

Talk with a Fathom expert directly about advantages of DMLM and DMLS.

Manufacturing Locations Across National Time Zones
Manufacturing Locations Across National Time Zones
The Fathom Advanced Manufacturing Platform
new map update 3
HEADQUARTERS

1050 Walnut Ridge Drive
Hartland, WI 53029
ISO 9001:2015
AS9100:2016
ITAR

ARIZONA

444 W. 21st St. Ste. 101
Tempe, AZ 85282
ISO 9001:2015
NIST800-171 Compliant
ITAR

FLORIDA

14000 N.W. 58th Court
Miami Lakes, FL 33014
ISO 9001:2015 Design Certified
ISO 13485:2016


 

CALIFORNIA

620 3rd Street
Oakland, CA 94607
ISO 9001:2015 Design Certified
NIST 800-171 Compliant
ITAR

ILLINOIS

1207 Adams Drive
McHenry, IL 60051

1401 Brummel Ave
Elk Grove, IL 60007
ISO 9001:2015 Design Certified

NEW YORK

401 W. Shore Blvd.
Newark, NY 14513
AS9100:2016
ISO 9001:2015
ITAR

1920 Slaterville Rd
Ithaca, NY 14850
ITAR

TEXAS

1801 Rowe Lane
Pflugerville, TX 78660
ISO 9001:2015
AS9100:2016

1513 Sam Bass Rd
Round Rock, TX 78681
ISO 9001:2015
ISO 13485:2016

COLORADO

7770 Washington St.
Denver, CO 80229
ISO 9001:2015
ITAR

MINNESOTA

13758 Johnson Street NE
Ham Lake, MN 55304