We are excited to announce that we will be going public on the New York Stock Exchange through a business combination with Altimar Acquisition Corp. II! Read more.

Design Differently’s Model of the Month

Design Differently Model of the Month

Congratulations to Carlo Quiñonez, Fathom’s Director of Research, whose 3D printed Aquino Thermal Chamber was chosen as Design Differently’s Model of the Month for May! To elaborate on the innovative functionality and inspiration behind this model, Quiñonez shares his thoughts on complex geometries, designing for additive manufacturing and open-source ideals. Stay tuned for more because the team has something special planned for this design. Check back soon!

june

Most incubators utilize metal plates to maintain a constant temperature — how does your 3D printed thermal chamber function using only plastics?

Quiñonez: Metals are used because of their inherent thermal conductivity, which allows engineers to use a small heating element like a burner or electrical heater without worrying too much about hot spots because the metal will spread the heat evenly. This approach wouldn’t work with insulators such as plastic. A focused source of heat on plastic would cause the temperature to increase quickly and subsequently melt the plastic.

To heat plastic, you need to overcome several challenges:

  1. Diffusion. You need to apply heat using very low watts per surface area. We accomplish this by using hot air to warm the plastic.

  2. Even heating. The hot air must be piped throughout the structure so that all areas receive the same amount of heating.

  3. Heat transfer. Since plastic is an insulator, it doesn’t allow heat to move very quickly. We have specially designed heat exchangers that extract the heat from the air as close as possible to the interior surface of the chamber.

final
aquino-thermal-chamber-bottom

Normally, these types of tight clearances and thin walls would require delicate and time-consuming support removal — how did you leverage complex geometries to your advantage to avoid this labor-intensive process?

Quiñonez: Designing all the geometry to be self-supporting was a cardinal constraint. This is what Design for Additive Manufacturing (DFAM) is all about. In conventional design projects, someone with manufacturing experience looks over designs and says, “We can’t injection mold this,” or, “If we changed this, it would be a lot easier to machine.” Basically, they’re optimizing the design for conventional manufacturing. I think the engineering community needs to start embracing DFAM. In the thermal chamber, I kept iterating on the design to eliminate supports. Since sloping sides of 45 degrees are self-supporting on FDM printers, I focused on the pyramid shape for the chamber.

Prior to joining Fathom, you earned a doctorate in biology and served as a post-doctoral researcher at the University of California, San Diego — how has your extensive background in life sciences contributed to this project?

Quiñonez: Science taught me to always question assumptions. Engineering is all about minimizing risk and the simple way to do that is by doing things the same way that have worked previously. Studying science definitely saved me from learning the “right” way of making things.

I was also exposed to all of the wonderful hardware scientists create in their labs. Because science focuses on new and unknown phenomena, commercially available tools and instruments often require modification and customization so they can be used in a given experiment. A lot of big advances in science were driven by new tools and capabilities. What I’ve realized is that scientists are already Makers.

It often takes years of experience and experimenting to develop truly innovative solutions — tell us about the evolution of your work on the thermal chamber project.

incubator

Quiñonez: This was part of a project I started in 2009 when I was a post-doctoral researcher at UCSD. I was rebuilding an instrument constructed by graduate student as part of his thesis. A key component was the incubator; a thermal chamber with some specialized features for growing cells in petri dishes. When I recreated the instrument, I focused on using 3D printing to make it easier for other scientists to develop their own versions. The design of the incubator went through many revisions. At first it looked a lot like the commercially available units, but over time it evolved to reflect the design freedom of 3D printing. However, all of the versions I made previously featured a metal chamber and only used 3D printing for the plastic parts of the incubator. It wasn’t until recently that I thought about eliminating the metal chamber and replacing it with plastic.

As you mentioned, lab equipment can be expensive and difficult to customize or modify — how does your 3D printed incubation chamber address these obstacles?

Quiñonez: 3D-printable designs are basically self-documenting. This means that if you’ve printed something out, then you also made the CAD file that documents everything you printed. It’s easier to share and lets other people start where you left off if they want to improve or further modify the design. Also, if you’re using a service bureau, the cost of 3D printed equipment compares favorably with the cost of conventional instruments. If you have a 3D printer, the cost of 3D printed equipment is almost negligible; you’re just paying for the material.

It’s apparent in your work that you are continually capitalizing on the unlimited design freedom of additive manufacturing — what are some other projects to which you’re currently applying this mentality?

Quiñonez: I’m currently working on a stepper motor, tensegrity structural components, positioning systems and sensors—all 3D-printable. These design embody CAP, a new engineering mentality that needs to replace KISS. This common acronym, stands for Keep It Simple Stupid and it’s the first thing that’s drilled into the heads of engineering students. CAP is the new acronym for the additive age: Complex As Practical. If you want to leverage the strengths of 3D printing, you have to make your parts as Complex As Practical. All of the designs I’m working on embody CAP.

To read more about the development of the Aquino Thermal Chamber, check out the Design Differently post on this winning design.

Comprehensive Capabilities for Rapid Manufacturing

At Fathom we offer a unique advantage of speed and agility-our experts help companies go from concept to prototype to manufacturing in ways not previously possible. 

90+ Machines  
SLS / / Two-day  SLA / / Next-day 
FDM / / Next-day DMLS / / Three-day 
PolyJet / / Same-day MJF / / Two-day
   

Get A Quote

30 Second Quotes
Prototype Tool / / As soon as 10 days
10K Parts / / 10 days
Production Tool / / As soon as 3 weeks
 

Get A Quote

3 & 5 Axis Milling & Turning
(Plastics, Composites and Metals)

Tolerance Accuracy Range
from +/-0.001″ to 0.005″

Get A Quote

Injection Molding Adjacent
without High Costs of Metal Tools

Most Commonly Used for High-Volume
Prototyping & Bridge to Production

Get A Quote

Finishing, Production Painting and Color Matching

Assembling, Including Embedded Electronic
Components, Threaded Inserts, and More

Get A Quote

CAD, DFAM and DFM Services

Apply Methods to Increase Speed
and Decrease Total Cost

Get A Quote

Highly Trained Staff / / Full-Time & Part-Time
Support as Short-Term & Long-Term Strategy

Decrease Downtime with Customizable
Staffing Accelerates Implementation

Get A Quote

Let’s get started.

Fathom is driven by advanced technologies and methods that enhance and accelerate today’s product development and production processes.

GET YOUR 30 SECOND QUOTE

Manufacturing Locations Across National Time Zones
Manufacturing Locations Across National Time Zones
The Fathom Advanced Manufacturing Platform
new map update 3
HEADQUARTERS

1050 Walnut Ridge Drive
Hartland, WI 53029
ISO 9001:2015
AS9100:2016
ITAR

ARIZONA

444 W. 21st St. Ste. 101
Tempe, AZ 85282
ISO 9001:2015
NIST800-171 Compliant
ITAR

FLORIDA

14000 N.W. 58th Court
Miami Lakes, FL 33014
ISO 9001:2015 Design Certified
ISO 13485:2016


 

CALIFORNIA

620 3rd Street
Oakland, CA 94607
ISO 9001:2015 Design Certified
NIST 800-171 Compliant
ITAR

ILLINOIS

1207 Adams Drive
McHenry, IL 60051

1401 Brummel Ave
Elk Grove, IL 60007
ISO 9001:2015 Design Certified

NEW YORK

401 W. Shore Blvd.
Newark, NY 14513
AS9100:2016
ISO 9001:2015
ITAR

1920 Slaterville Rd
Ithaca, NY 14850
ITAR

TEXAS

1801 Rowe Lane
Pflugerville, TX 78660
ISO 9001:2015
AS9100:2016

1513 Sam Bass Rd
Round Rock, TX 78681
ISO 9001:2015
ISO 13485:2016

COLORADO

7770 Washington St.
Denver, CO 80229
ISO 9001:2015
ITAR

MINNESOTA

13758 Johnson Street NE
Ham Lake, MN 55304