Welcome! Studiofathom.com, GPIprototype.com and Midwestcomposite.com are now FathomMFG.com Learn more

Fused Deposition Modeling 3D Printing

3D Printing Cost Calculator
Online Quotes in 30 Seconds*
  • Industry-leading turnaround times
  • Unlimited project complexity
  • Proactive engineer recommendations

Get your 30 second quote now

Over 100k quotes provided to top US companies.
*DMLS quotes may take 24 hours.
Fused Deposition Modeling 3D Printing

Fused Deposition Modeling (FDM) is ideal when you need to build concept models, functional prototypes and end-use parts using standard, engineering-grade and high-performance thermoplastics. As you consider the many material options available for FDM versus other additive manufacturing technologies, remember that this process uses the same types of raw materials used in the injection molding process.

What is FDM Printing?

FDM is a filament-based additive technology distributed by a moving print head that extrudes a heated thermoplastic material in a pattern layer by layer onto a build platform. This technology includes the use of support material to create supportive structures removed by force or solution. FDM is the best choice for jigs and fixtures, molds, tooling and other functional parts that require durability and resistance. Additional examples of FDM include medical tissue engineering, rapid prototyping, modeling, production applications and more.

How Does a Fused Deposition Modeling (FDM) 3D Printer Work?

The FDM process begins when a computer-aided design (CAD) design is made. The CAD file acts as a set of instructions or blueprints for the machine. An FDM printer will use two types of materials; one for modeling and the other for support. Once the printing begins, filaments are unwound from a coil and fed into an extrusion nozzle. The nozzle is heated to melt the material and can be moved in horizontal and vertical directions, controlled by computer-aided manufacturing (CAM) software package. The model or part is produced by extruding small beads of thermoplastic material to form successive layers, with each material layer hardening immediately after extrusion from the nozzle. Once the piece is made, the support structures must be removed by force or solution. The more massive and more complex the part, the longer it will take to print.

What Materials are Used in Fused Deposition Modeling?

One of the most essential advantages of FDM is the ability to use a variety of materials. FDM printers are fed by a filament from a spool, usually thermoplastic and organic material blends. Several materials are available with different trade-offs between strength and temperature properties, including ABS polymer. FDM technology can also be used with polycarbonates, polycaprolactone, polyphenyl sulfones and waxes. The material selected will affect the accuracy and properties of the part produced and the price.

FDM 3D Printed Parts and Images


MATERIALS DESCRIPTION
TPU
(thermoplastic polyurethane elastomer)
  • Accurate elastomer parts with high elongation
  • Superior toughness and abrasion resistance
  • Wide variety of applications including flexible hoses, tubes, air ducts and vibration dampeners
Antero™ 800NA
(polyetherketoneketone)
  • High heat and chemical resistance
  • Low outgassing and high dimensional stability
  • Excellent strength, toughness and wear-resistant properties
ULTEM™ 1010 resin
(polyetherimide)
  • Food safety and bio-compatibility certification
  • Highest heat resistance, chemical resistance and tensile strength
  • Outstanding strength and thermal stability
ULTEM 9085 resin
(polyetherimide)
  • FST (flame, smoke, toxicity)-certified thermoplastic
  • High heat and chemical resistance; highest flexural strength
  • Ideal for commercial transportation applications such as airplanes, buses, trains and boats
FDM Nylon 12™
(polyamide 12)
  • The toughest nylon in additive manufacturing
  • Excellent for repetitive snap fits, press fit inserts and fatigue-resistance applications
  • Simple, clean process – free of powders
FDM Nylon 12CF™
(polyamide 12CF)
  • Carbon-filled thermoplastic with excellent structural characteristics
  • Highest flexural strength
  • Highest stiffness-to-weight ratio
PC
(polycarbonate)
  • Most widely used industrial thermoplastic with superior mechanical properties and heat resistance
  • Accurate, durable and stable for strong parts, patterns for metal bending and composite work
  • Great for demanding prototyping needs, tooling and fixtures
PC-ISO™
(polycarbonate – ISO 10993 USP Class VI biocompatible)
  • Biocompatible (ISO 10993 USP Class VI)1 material
  • Sterilizable using gamma radiation or ethylene oxide (EtO) sterilization methods
  • Best fit for applications requiring higher strength and sterilization
PC-ABS
(polycarbonate – acrylonitrile butadiene styrene)
  • Features high dimensional stability and colorless transparency
  • Has five medical approvals including cytotoxicity, genotoxicity, delayed type hypersensitivity, irritation and USP plastic class VI
  • Ideal for applications requiring prolonged skin contact of more than 30 days and short-term mucosalmembrane contact of up to 24 hours
ASA
(acrylonitrile styrene acrylate)
  • Build UV-stable parts with the best aesthetics of any FDM material
  • Ideal for production parts for outdoor infrastructure and commercial use, outdoor functional prototyping and automotive parts and accessory prototypes
ABS-ESD7™
(acrylonitrile butadiene styrene – static dissipative)
  • Static-dissipative with target surface resistance of 104 ohms (typical range 105 – 103 ohms)2
  • Makes great assembly tools for electronic and static-sensitive products
  • Widely used for functional prototypes of cases, enclosures and packaging
ABS-M30™
(acrylonitrile butadiene styrene)
  • Versatile material: good for form, fit and functional applications
  • Familiar production material for accurate prototyping
  1. 0.005 inch (0.127 mm) layer thickness not available for Stratasys F900.

  2. See individual material spec sheets for testing details.

  3. Annealed

  4. Actual surface resistance may range from 109 to 106 ohms, depending upon geometry, build style and finishing techniques.

  5. Available only on the Stratasys F370

For more material options, download FDM Material Specification PDF and consult a Fathom specialist for details.

For additional flexible 3D printing options // TPU 88A for SLS, PolyJet & Urethane Casting
Order Material Samples // Keychains & Kits

Diagnol-Line-Spacer-1000x.jpg

What are the Advantages of FDM?

There are many advantages to Fused Deposition Modeling. One main benefit of FDM technology is its ability to produce parts and prototypes using engineering grade plastics. FDM thermoplastic parts are strong, last longer and are dimensionally stable. FDM parts can be used for advanced conceptual models, functional prototyping, production parts and manufacturing tools. Modern FDM 3D printing machines possess large build envelopes capable of producing larger pieces at higher quantities than other additive manufacturing technologies. Today’s FDM printers are so efficient that they can eliminate many of the steps necessary with traditional manufacturing. As a result, overhead costs are reduced and there is a quicker turnaround. Brands often select FDM technology due to the wide selection and lower price of materials. Multiple different types of material can be used simultaneously in the FDM process. Some additional benefits of FDM include:

  • Suitable for rapid prototyping, modeling and production
  • No assembly required – all of the parts needed are produced as a single object
  • Impact resistance and toughness
  • Lightweight product

What Industries use FDM?

Startups and large aerospace companies have all used Fused Deposition Modeling to produce their products. FDM parts are durable, chemical resistant and can endure extreme conditions, making them ideal for testing and end-use parts. As FDM technology continues to advance, more and more industries have adopted the technology, including:

  • Medical & Dental
  • Automotive and Antique Automotive
  • Jewelry and Art
  • Custom Automation
  • Architecture
  • Pharmaceutical
  • Health and Beauty
  • Food and Beverage
  • Packaging

Why Choose FDM?

One of FDM’s primary benefits is the ability to test a design before transitioning to the production process physically. This allows a brand to identify any issues and make improvements early in the design process. The ability to test saves a lot of time and money in the long run. A functional prototype can be produced within a few hours or days, depending on the complexity of the part. Having a functional prototype not only reduces the time to market but maximizes the overall product performance.

FDM technology also presents an opportunity to create custom tooling and fixtures. This allows a brand the flexibility to take on new projects and lower costs and risks in a timely manner, much quicker than with traditional production. Rather than spend a lot of time and money on tooling and making a custom mold or cast, you can print it with FDM.

A low-volume production run is easy with FDM. There is no minimum quantity requirement; you can make as much or as little as is required. Production can start as soon as a CAD design is available and translated to the 3D printing machine.

What is the Difference Between FFF and FDM?

Fused Filament Fabrication (FFF) is the same process as FDM. The two terms can be used interchangeably. FFF uses a filament material that is layered and then fused, just like FDM. Fused Deposition Modeling was initially invented and trademarked by Stratysys, Inc. in 1988. The patent did not expire until 2009. To avoid trademark violations, other 3D printing companies began to reference the technology as Fused Filament Fabrication.

Who Invented Fused Deposition Modeling?

FDM technology was invented by Stratasys founder Scott Crump nearly 30 years ago using the same production-grade thermoplastics found in traditional manufacturing processes. FDM is ideal for applications that require tight tolerances, toughness and environmental stability. The materials available for FDM also meet applications requiring specialized properties such as electrostatic dissipation, translucence, biocompatibility, VO flammability, or FST ratings.

FDM-Process-1.jpg
FDM-Part-Example-1.jpg

FDM Timeline:

  • 1989 Scott and Lisa Crump patent Fused Deposition Modeling (FDM)
  • 1991 Stratasys commercializes FDM
  • 2008 Stratasys offers high-performance ULTEM 9085 for its 900MC and 400MC FDM machines
  • 2009 First FDM patent expires
  • 2011 Beginning of FDM 3D desktop printers

Get a FDM 3D Printing Quote from Fathom

Quickly get a quote in as soon as one hour on any FDM 3D printing project today with our SmartQuote platform.

Diagnol-Line-Spacer-1000x.jpg



Comprehensive Capabilities for Rapid Manufacturing

At Fathom we offer a unique advantage of speed and agility-our experts help companies go from concept to prototype to manufacturing in ways not previously possible. 

3D Printing / Additive Manufacturing
90+ Machines  
SLS / / Two-day  SLA / / Next-day 
FDM / / Next-day DMLS / / Three-day 
PolyJet / / Same-day MJF / / Two-day
Injection Molding

30 Second Quotes

Prototype Tool / / As soon as 10 days

10K Parts / / 10 days

Production Tool / / As soon as 3 weeks

CNC Machining

3 & 5 Axis Milling & Turning
(Plastics, Composites and Metals)

Tolerance Accuracy Range
from +/-0.001″ to 0.005″

Urethane Casting

Injection Molding Adjacent
without High Costs of Metal Tools

Most Commonly Used for High-Volume
Prototyping & Bridge to Production

Let’s get started.

Fathom is driven by advanced technologies and methods that enhance and accelerate today’s product development and production processes.

GET YOUR 30 SECOND QUOTE